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The transient-time correlation function (TTCF) method is used to calculate the nonlinear response
of a homogeneous atomic fluid close to equilibrium. The TTCF response of the pressure tensor
subjected to a time-independent planar mixed flow of shear and elongation is compared to directly
averaged non-equilibrium molecular dynamics (NEMD) simulations. We discuss the consequence of
noise in simulations with a small rate of deformation. The generalized viscosity for planar mixed flow
is also calculated with TTCF. We find that for small rates of deformation, TTCF is far more efficient
than direct averages of NEMD simulations. Therefore, TTCF can be applied to fluids with defor-
mation rates which are much smaller than those commonly used in NEMD simulations. Ultimately,
TTCF applied to molecular systems is amenable to direct comparison between NEMD simulations
and experiments and so in principle can be used to study the rheology of polymer melts in industrial
processes. © 2012 American Institute of Physics. [doi:10.1063/1.3684753]

I. INTRODUCTION

The SLLOD algorithm for homogeneous shear flow1, 2 is
a well-known non-equilibrium molecular dynamics (NEMD)
method to simulate homogeneous atomic or molecular shear
flow. It has also been proven to be applicable to any gen-
eralized homogeneous flow, including elongational flow and
mixed flow.3, 4 In combination with Lees-Edwards periodic
boundary conditions,5 indefinitely long simulations can be
conducted for shear. The 1990s has seen the development
of methods to simulate indefinitely long extensional flow
by applying the Kraynik and Reinelt6 periodic boundary
conditions.7–9 Shear or elongational flow simulations have
proven to be useful in understanding processes, such as ex-
trusion, injection molding, sheet casting, and the dynamics of
DNA chains. These, and many other industrial and biologi-
cal processes are in reality much more complicated.10, 11 Hunt
et al.12 recently devised an algorithm with which any linear
combination of shear and planar elongational flow, called pla-
nar mixed flow (PMF), can be simulated. They engineered a
set of periodic boundary conditions, based on lattice theory,
that allows for indefinitely long simulations. This new algo-
rithm decreases the gap between NEMD simulations and real
systems.

In a steady state, one can average NEMD simulations
over time to eliminate the fluctuations related to instantaneous
quantities. This approach is efficient far from equilibrium,
where the signal-to-noise ratio is high. Close to equilibrium,
however, very long time-averages are needed in order to ob-
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tain good statistics, making this method unfeasible for simu-
lations with very small deformation rates. Molecular dynam-
ics simulations are typically run at fields that are at least four
orders of magnitude larger than in typical experiments, and
thus not very suitable for mimicking experiments on a one-
to-one basis. However, techniques such as temperature-time
superposition13 can be used to directly relate NEMD results
to experiments, confirming the high accuracy of such sim-
ulations. Bair et al.14 have applied this method successfully
to compare NEMD shear flow simulations of low-molecular-
weight fluids to experimental data. The transient-time corre-
lation function (TTCF) (Refs. 2, 15, and 16) method offers
a more efficient way to study the rheology of fluids close to
equilibrium. This method is based on the time-correlation be-
tween the initial rate of energy dissipation and the transient
response after an external field is activated.

While atomic fluids may behave as a Newtonian fluid
even for fields that are larger than industrial applications, for
complex fluids, the nonlinear response can dominate already
at very small external fields. Therefore, a nonlinear-response
treatment, such as TTCF, is very important. For example, Pan
and McCabe,17 and later Mazyar et al.,18 have applied TTCF
to calculate the viscosity of n-decane in a homogeneous shear
flow. The transient response of shear flow1, 19–22 and various
types of shear-free flow23, 24 have been studied in the past for
various types of atomic systems. Here, we consider the tran-
sient response of atomic PMF.

In Sec. II, we give a derivation of the transient-time corre-
lation function and discuss the consequences of instantaneous
fluctuations on the accuracy of the calculation. In Sec. III,
we treat a set of equations of motion for a homogeneous
mixed flow of shear and elongation. In Sec. IV, we discuss
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the simulation details and implications of phase-space map-
ping. In Sec. V, we discuss the simulation results for four field
strengths and finally we end with some concluding comments
in Sec. VI.

II. TRANSIENT-TIME CORRELATION FUNCTION

Evans and Morriss1, 19, 20, 25, 26 described the procedure for
TTCF in a number of papers. Here, we briefly follow the pro-
cedure for the general case. The evolution of a field-dependent
phase variable B (which is denoted as a scalar here, but can be
a tensor as well) subject to a homogeneous external field (ac-
tivated at t = 0) can be given by the time-derivative of the
Heisenberg representation of a phase-space average

d〈B(t)〉
dt

=
∫

d� f (0)�̇ · ∂B(t)

∂�
, (1)

where f(0) is the N-particle distribution function at time zero
(i.e., just before the external field is turned on) and � is
the phase-space vector. The phase variable is propagated via
the phase variable propagator exp(iLt), which relates the cur-
rent value of a phase variable to the initial value via B(t)
= exp(iLt)B(0), where iL is the p-Liouvillean. This implies
that the current value of the phase variable depends only on
the initial value and on the equations of motion and not on the
current phase-space vector.

Integrating Eq. (1) by parts gives

d〈B(t)〉
dt

= [f (0)�̇B(t)]S −
∫

d� B(t)
∂

∂�
· (f (0)�̇), (2)

where the surface term is zero. Integrating Eq. (2) with respect
to time gives

〈B(t)〉 = 〈B(0)〉 −
∫ t

0
ds

∫
d� B(s)

∂

∂�
· (f (0)�̇). (3)

For the adiabatic case, Eq. (3) can be rewritten using23

∂

∂�
· (f (0)�̇) = iLf (0) = βJ(0) : Fef (0)

= βV (P(0) : ∇u)f (0) = −βḢad (0)f (0), (4)

where iL is the f-Liouvillean, β = 1/kBT, J(0) is the ini-
tial dissipative flux, Fe is the external driving force, and
Ḣad (0) = −V (P(0) : ∇u) is the rate of energy dissipation of
the adiabatic system the instant the field is turned on. The
rate of energy dissipation can be calculated from the SLLOD
equations of motion (Eqs. (11) and (12)) presented in Sec. III.
Substituting Eq. (4) into Eq. (3) results in the TTCF formula-
tion for a general homogeneous flow

〈B(t)〉 = 〈B(0)〉 − βV

∫ t

0
ds 〈B(s)(P(0) : ∇u)〉, (5)

= 〈B(0)〉 +
∫ t

0
ds 〈B(s)�(0)〉, (6)

where �(0) ≡ −βV P(0) : ∇u.
If the system exhibits mixing,20 then the instantaneous

phase variable B(t) becomes uncorrelated to the initial rate of
energy dissipation P(0) : ∇u for large t, leading to 〈B(t)�(0)〉

∼ 〈B(t)〉〈�(0)〉. The ensemble average of the initial rate of
energy dissipation 〈�(0)〉 approaches zero in the statistical
limit for infinitely many trajectories or atoms. However, due
to numerical inaccuracy 〈B(t)〉〈�(0)〉 �= 0 (this can be seen as
the rate of growth of the error due to an initial non-zero av-
erage rate of energy dissipation) and thus the integral never
converges to a constant value. In order to account for this nu-
merical inaccuracy, we can subtract the error as follows:

〈B(s)(�(0) − 〈�(0)〉)〉 = 〈B(s)�(0)〉 − 〈B(s)〉〈�(0)〉, (7)

= 〈(B(s) − 〈B(s)〉)�(0)〉, (8)

= 〈�B(s)�(0)〉, (9)

where �B(s) = B(s) − 〈B(s)〉 denotes the instantaneous fluc-
tuations in B(s). Note that this expression goes to zero when
B(t) and �(0) become uncorrelated.

In the special case that the initial average rate of en-
ergy dissipation 〈�(0)〉 is exactly zero, the correlation can be
rewritten to 〈B(s)�(0)〉 = 〈�B(s)�(0)〉. This condition is only
exactly satisfied in the case of a suitable phase-space map-
ping, which will be discussed in Sec. IV.

Substituting the corrected correlation function (Eq. (9))
into Eq. (5) gives

〈B(t)〉 = 〈B(0)〉 − βV

∫ t

0
ds 〈�B(s)�(0)〉, (10)

which is, in general, not identical to Eq. (6).

III. PLANAR MIXED FLOW

NEMD simulations are a commonly used tool to study
the rheology of homogeneous fluids out of equilibrium.4, 27

The SLLOD equations of motion2, 3 are a set of first-order
linear differential equations that couple an external driving
force to a fluid

ṙi = pi

mi

+ ri · ∇u, (11)

ṗi = Fφ

i − pi · ∇u − ζpi . (12)

The first equation represents the evolution of the position of
atom i, where r is the position, p is the peculiar momentum,
and ∇u is the velocity gradient. The velocity gradient con-
tains the homogeneous external field that drives the system
away from a thermodynamic equilibrium. Equation (11) de-
composes the velocity into a thermal velocity ci = pi/mi and
the local streaming velocity u(ri) = ri · ∇u. The type of flow
is a direct consequence of the velocity gradient. The second
equation gives the evolution of the peculiar momentum. The
force on atom i due to other atoms is denoted by Fφ

i . The last
term in Eq. (12) couples the fluid to a heat bath, where ζ is
a thermostat variable, which can be seen as a friction coeffi-
cient. The thermostat adds or removes heat in order to control
the kinetic temperature.

In the past, mainly shear flow1, 21, 22, 28–30 and elongational
flow7, 9, 23, 24, 29, 31–35 have been studied due to their relative
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simplicity. Evans and Heyes36 were the first to combine shear
and elongation. Their simulations were however limited by
the deformation of the cell size in the direction of contraction
since suitable periodic boundary conditions (that allow for
indefinitely long simulations) were not available. Recently,
Hunt et al.12 devised an algorithm to simulate indefinite dura-
tion PMF using NEMD methods. The constant, traceless ve-
locity gradient tensor is given by

∇u =
⎡
⎣ ε̇ 0 0

γ̇ −ε̇ 0
0 0 0

⎤
⎦ , (13)

where ε̇ is the rate of extension and γ̇ is the shear rate. Expan-
sion is applied in the x-direction and contraction in y. Shear is
applied in the x-y plane, with the gradient of velocity in y.

Substituting Eq. (13) into the SLLOD equations of mo-
tion (Eqs. (11) and (12)), the equations under which planar
mixed flow evolves become

ṙi = pi

mi

+ ε̇(xiex − yiey) + γ̇ yiex, (14)

ṗi = Fφ

i − ε̇(pxiex − pyiey) − γ̇ pyiex − ζpi , (15)

where eα is a unit vector oriented in the α-direction, αi is
the position of atom i, and pαi is its peculiar momentum in
the α-direction. Each atom feels the external field at the same
time. The explicit external field in combination with the ho-
mogeneous character makes the SLLOD equations of motion
amenable to response theory.

Combining the TTCF formulation (Eq. (10)) with the rate
of energy dissipation (Eq. (4)) and the velocity gradient for
PMF (Eq. (13)), results in the nonlinear response of a phase
variable B that evolves under PMF

〈B(t)〉 = 〈B(0)〉 − βV

(
ε̇

∫ t

0
ds 〈�B(s)(Pxx(0) − Pyy(0))〉

+ γ̇

∫ t

0
ds 〈�B(s)Pxy(0)〉

)
. (16)

The nonlinear response of observable B(t) evolving under
PMF will, in general, not be the same as the superposition
of the nonlinear response of separate planar shear and planar
elongation simulations. The reason for this is that the nonlin-
ear response contains the product of the instantaneous phase
variable B(t) (evolving under PMF), as well as the initial dis-
sipation � for PMF. Since both quantities are field-dependent,
the product does not simply relate to the field in a linear fash-
ion. For the linear response, the superposition would be valid,
since the dissipation for PMF is simply a linear combina-
tion of that of planar Couette flow and planar elongational
flow (PEF) and the non-equilibrium (field-dependent) values
of the phase variable are not included in the linear response
formulation.

IV. SIMULATIONS

We simulate an atomic fluid whose interactions are medi-
ated via a Weeks-Chandler-Andersen (WCA) (Ref. 37) poten-

tial and the equations of motion are integrated with a fourth-
order Runge-Kutta scheme with a time-step of �t = 0.001.
This algorithm is self-starting, which is an important prop-
erty for the study of transient behavior.20 All physical quan-
tities presented are reduced using the particle mass m, inter-
action length scale σ , and the potential energy well-depth ε.
These scales are set to unity. The phase point of the fluid is
set close to the Lennard-Jones triple point, ρ = 0.8442 and
T = 0.772, where the properties of simple fluids (such as Ar-
gon) are well-known. To maintain a constant temperature, the
generated heat needs to be removed from the system. This is
done via the Gaussian isokinetic thermostat.38

The initial cell vectors in the plane of deformation have
lengths 14.43 and 8.43 and a relative angle of 90◦ (for our sim-
ulation with equal rates of shear and elongational). As time
advances, the simulation cell is deformed. Since the cell size
has to be at least twice the cut-off distance of the potential
(21/6 for the WCA potential) in each direction (in order for
atoms not to interact with their periodic image), the maxi-
mum simulation time would be limited by the cell size in the
contraction direction, regardless of the initial cell-size. Hunt
et al.12 introduced a set of boundary conditions that remap
the positions of the atoms to the initial simulation cell after a
certain time without disturbing the flow. These boundary con-
ditions avoid the time limit due to the deformation of the cell
and allow for indefinitely long simulations.

Before the external field is activated and the transient re-
sponse can be calculated, the simulation is relaxed to equi-
librium. This results in an initial state for a non-equilibrium
simulation �1 = (x, y, z, px, py, pz), where each component
is a vector with length N. If a system exhibits mixing, we can
modify the initial state in specific ways, such that another ini-
tial state is created with equal probability and internal energy.
This procedure is called phase-space mapping.2, 19 The phase-
space mapping provides additional initial configurations with
the purpose of creating more field-dependent trajectories from
an equilibrium phase point. These additional trajectories en-
hance the statistical accuracy.

If a mapping can be created that exactly satisfies∑
M (P(�M (0)) : ∇u) = 0 (where the summation is over the

non-equilibrium starting states), the phase-space mapping
eliminates the numerical uncertainty that leads to a non-
zero initial rate of energy dissipation.19 Hence, 〈�(0)〉
= 0 would be exactly satisfied, making the subtraction shown
in Eq. (7) redundant. If the pressure tensor is symmetric at
time t = 0 (before the field is activated), the phase vector
�M = MPMF (�1) = (−y, x, z,−py, px, pz) satisfies the con-
dition given above for PMF. The off-diagonal pressure term
Pxy is mapped to −Pyx, which cancel out against each other
in the sum over the non-equilibrium starting states in the case
that Pxy(0) = Pyx(0). The pressure tensor for an atomic fluid
is inherently symmetric. This is, however, not always the case
for molecular fluids, in which case an additional phase-space
mapping is required. In addition to satisfying this condition,
a suitable phase-space mapping should not conflict with the
boundary conditions. Since boundary conditions for a generic
flow type do not exist that will guarantee indefinite simulation
times, the phase-space mapping needs to be addressed on a
case-to-case basis. Indefinite simulations of PMF, in general,
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FIG. 1. y-reflection mapping in a rectangular cell oriented by some non-zero
angle with respect to the flow fields. The position of two points before map-
ping is indicated with t0. After the y-reflection mapping (t1) and projection
onto the initial cell, the relative distance between the points has changed.

require non-orthogonal cells, which makes it very difficult to
remap positions without changing the relative distances be-
tween atoms and thus disturbing the initial conditions of the
flow. Furthermore, the flow field does, in general, not align
with the lattice vectors. This can be the case even if a cell
is orthogonal, for example, in PEF with the Kraynik-Reinelt
periodic boundary conditions.6

Figure 1 illustrates the problem that is associated with a
phase-space mapping of the coordinates of particles when the
cell is not aligned with the cartesian axes. The figure shows
a y-reflection mapping2 in a rectangular cell. The positions of
two points before mapping are denoted with (1, t0) and (2, t0).
The y-reflection mapping reflects the y-coordinates of each
point in the cell with respect to the x-axis (i.e., all the positions
of the mapped points lie within the red area), and the new
positions of the two points are marked by (1, t1) and (2, t1).
One of the points is still located in the blue cell, whereas the
other point is located in a periodic image of the cell. Mapping
the periodic images onto the (blue) cell results in the final
positions (1m, t1) and (2m, t1). Relative to the initial points (1,
t1) and (2, t1), the distance between the two point has changed.
Hence, the phase-space mapping in this example interferes
with the dynamics of the fluid.

Finding a mapping in which the relative distances be-
tween atoms remain unchanged is still an open problem for
a simulation cell that is not square or aligned with the field di-
rections. However, the correction shown in Eq. (7), eliminates
the need for this specific phase-space mapping. Changing the
sign of all of the momenta does not create a phase vector
that satisfies the first condition stated above. It does, however,
create a distinct phase-space trajectory. Therefore, the time-
reversal mapping �2 = MT (�1) = (x, y, z,−px,−py,−pz)
is applied to each initial state for the non-equilibrium simu-
lations performed in this study.

In order to obtain good statistics, many non-equilibrium
simulations are needed. This is done by running one equi-

librium simulation for a long time and branching off many
non-equilibrium trajectories. The time between each new set
of branches (where each set consists of two branches) is cho-
sen to be larger than the relaxation time of the pressure auto-
correlation function in order to make sure that the different
sets of branches are uncorrelated to each other.

V. RESULTS AND DISCUSSION

We look at the transient response of the shear stress B(t)
= Pxy(t) and the normal stresses B(t) = Pxx(t), Pyy(t) in the
plane of deformation. We have chosen to study these stress
components since they contribute to the generalized viscosity
for PMF.

The nonlinear response is compared to a direct average of
the non-equilibrium molecular dynamics simulations, where
the average instantaneous pressure tensor is calculated with
the virial stress formulation

V P(t) =
〈∑

i

pipi

m
+ 1

2

∑
i,j �=i

Fφ

ij rij

〉
, (17)

where pipi denotes the tensor product between the peculiar
momentum vectors, Fφ

ij is the interaction force between atoms
i and j, and rij = ri − rj .

We present simulation results for field strengths, γ̇ and ε̇,
5 × 10−4, 0.001, 0.005, and 0.05. There is no reason why the
shear rate γ̇ and the elongational rate ε̇ should be equal and
these values are arbitrarily chosen. Simulations were also run
where the shear rate and the elongational rate were not equal
(not shown here). These simulations have a different ratio be-
tween the shear stress and the normal stress fields, but they
show a similar transient behavior. Furthermore, simulations
have been run for shear flow and planar elongational flow in
order to verify our simulation results with earlier studies.20, 23

Good agreement was found for both types of flow.
Figures 2 and 3 show the stress response under planar

mixed flow with ε̇xx = 0.05, ε̇yy = −0.05, and γ̇ = 0.05. The
direct averages of the instantaneous stresses and the TTCF re-
sponse are shown. The data is averaged over 10 × 2 × 7500
non-equilibrium trajectories, where the first number indicates
the number of distinct simulations, the second is the num-
ber of simultaneous non-equilibrium trajectories branched off
from an equilibrium state (i.e., the original equilibrium start-
ing state and the mapped starting state) and the last number
indicates how many pairs of non-equilibrium trajectories are
branched off per simulation. Each trajectory is a simulation
containing N = 896 atoms. The standard error is given by
the error bars. The standard error is calculated from the 10
distinct simulations. For this external field, both methods pro-
duce smooth, converging profiles which are in good agree-
ment with each other.

For smaller deformation rates, the efficiency of TTCF
is expected to become higher than that of direct NEMD
averages. Figures 4 and 5 show the transient stress subject
to PMF with ε̇xx = 0.005, ε̇yy = −0.005, and γ̇ = 0.005.
The number of non-equilibrium trajectories and the number
of atoms are identical to the data shown in Figures 2 and 3.
The direct NEMD averages fluctuate strongly around an
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FIG. 2. B = Pxy for mixed flow with γ̇ = 0.05 and ε̇ = 0.05. The label “T”
indicates the TTCF result and “D” the direct average over the same non-
equilibrium trajectories.

underlying trend, while the TTCF response is again smooth
and converges to a steady-state.

One would expect the initial shear stress to be zero
and the initial normal stresses equal to the isotropic pres-
sure. In practice, however, the ensemble average is subject to
small deviations due to instantaneous fluctuations, as seen in
Figures 4 and 5, but converges in the statistical limit of in-
finitely many atoms or trajectories. As the uncertainty in the
ensemble average of the starting states 〈B(0)〉 is independent
of the deformation rate, the relative importance of the ini-
tial inaccuracy becomes larger as the external field becomes
smaller.

From the transient stresses and the velocity gradient, a
“transient viscosity” can be calculated. The viscosity is calcu-
lated using the expression presented by Hounkonnou et al.39

η(t, γ̇ , ε̇) = −�(t) : S
S : S

, (18)

where � = P − pI is the (traceless) viscous pressure tensor
and S = ∇u + (∇u)T is the symmetric strain rate tensor.
Hounkonnou et al. derived this expression and replaced the
viscous stress tensor with the full stress tensor, which in
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FIG. 3. Normal stress response under planar mixed flow with ε̇xx = 0.05,
ε̇yy = −0.05, and γ̇ = 0.05. The label “T” indicates the TTCF result and
“D” the direct average over the same non-equilibrium trajectories.
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FIG. 4. B = Pxy for mixed flow with γ̇ = 0.005 and ε̇ = 0.005. The label
“T” indicates the TTCF result and “D” the direct average over the same non-
equilibrium trajectories.

theory gives the same result. In practice, however, this is
only the case in the statistical limit due to the uncertainty
explained above. We use the formulation where the viscosity
follows from the viscous stress, as defined in Eq. (18) above.
The steady-state field-dependent viscosity follows from

η(γ̇ , ε̇) = lim
t→∞ η(t, γ̇ , ε̇). (19)

Figure 6 shows the viscosity for a mixed flow with
γ̇ = 0.005 and ε̇ = 0.005. The TTCF response clearly
converges to the steady-state viscosity η = 2.35 ± 0.02,
whereas the direct average (calculated from the same number
of trajectories) remains noisy. The viscosity calculated from
a steady-state long time-average at the same state point and
with the same deformation rate is η = 2.31 ± 0.09, which is
in good agreement with the TTCF result.

The results shown in Figures 7 and 8 illustrate, for a
mixed flow with γ̇ = 0.001 and ε̇ = 0.001, that the statis-
tical inaccuracy of 〈B(0)〉 becomes relatively important for
very small fields, where the response is small. While the re-
sponse to the field at t > 0 is very accurate for weak fields,

0 0.5 1 1.5 2
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P ii
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FIG. 5. Normal stress response under planar mixed flow with ε̇xx = 0.005,
ε̇yy = −0.005, and γ̇ = 0.005. The label “T” indicates the TTCF result and
“D” the direct average over the same non-equilibrium trajectories.
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FIG. 6. Viscosity for mixed flow with γ̇ = 0.005 and ε̇ = 0.005. The label
“T” indicates the TTCF result, “D” the direct NEMD average and “SS” is the
viscosity calculated from a steady-state time-average of a different simulation
at the same state point.

the error in the initial t = 0 ensemble implies an error in the
trajectory origin. The figures show that the magnitude of the
error bars remains approximately constant in time, meaning
that the initial error in 〈B(0)〉 (at equilibrium) dominates the
uncertainty for all time. The inset in Figure 8 shows that the
equilibrium value (t = 0) of both normal stresses are not iden-
tical. Similarly, Figure 7 shows that the initial shear stress
is non-zero due to numerical inaccuracy. In the case of B
= Pxy, we know that the initial value should be zero, and for
the normal stresses we know that in the thermodynamic limit
Pxx(0) = Pyy(0) = Pzz(0) = p = 1

3 Tr(P) has to apply. How-
ever, a generic approach to eliminate the uncertainty of the
direct averages 〈B(0)〉 is unknown. Note that the viscosity cal-
culation does not suffer from this inaccuracy, since only the
viscous stresses are taken into account. The viscosity calcu-
lated for a mixed flow with γ̇ = 0.001 and ε̇ = 0.001 con-
verges to η = 2.31 ± 0.01, which is slightly lower than the
viscosity calculated for a field γ̇ = 0.005 and ε̇ = 0.005.
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FIG. 7. B = Pxy for mixed flow with γ̇ = 0.001 and ε̇ = 0.001. The label
“T” indicates the TTCF result and “D” the direct NEMD average. The error
in the starting point of the trajectory is of the same order of magnitude as the
response.
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FIG. 8. Normal stress response under planar mixed flow with ε̇xx = 0.001,
ε̇yy = −0.001, and γ̇ = 0.001. The label “T” indicates the TTCF result and
“D” the direct NEMD average. The inset shows the normal stresses directly
after the external field is activated. The error bars are not shown in the inset,
since they are too large to fit in the domain shown.

For an even smaller field, the numerical uncertainty in
the starting states of the trajectories becomes even more dom-
inant. To illustrate the difference with the stress fields shown
previously, Figures 9 and 10 show the viscous stresses for a
mixed flow with γ̇ = 5 × 10−4 and ε̇ = 5 × 10−4. The num-
ber of atoms is again N = 896 and the number of trajectories
used is now 10 × 2 × 20 000. Considering only the viscous
stresses clearly shows the difference in quality between the
direct averages and TTCF. The standard deviation for the di-
rect averages is large relative to the response, whereas TTCF
results in a smooth profile with a high accuracy. The viscos-
ity converges to η = 2.28 ± 0.01, which is again slightly
lower than the viscosity calculated for a field γ̇ = 0.001 and
ε̇ = 0.001. The direct averaged stress fields are much too
noisy to calculate a meaningful viscosity.

For these small fields, the nonlinearity of the response
of the atomic fluid becomes negligibly small and the vis-
cosity approaches the Newtonian regime. In this regime, the
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FIG. 9. Viscous shear stress �xy for mixed flow with γ̇ = 5 × 10−4 and
ε̇ = 5 × 10−4. The label “T”indicates the TTCF result and “D” the direct av-
erage over the same non-equilibrium trajectories. The number of trajectories
used is 10 × 2 × 20 000.
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FIG. 10. Viscous normal stress response under planar mixed flow with
ε̇ = 5 × 10−4 and γ̇ = 5 × 10−4. The label “T” indicates the TTCF result
and “D” the direct average over the same non-equilibrium trajectories. The
number of trajectories used is 10 × 2 × 20 000.

transport properties are independent of the external field, thus
simulations are suitable for comparison to experiments on
simple Newtonian fluids.

VI. CONCLUSIONS

We have applied TTCF to atomic PMF for a variety of
small fields strengths. We have presented the stress response
and viscosities both in the shear-thinning region and in the
Newtonian region. Good agreement was found between di-
rect averages of NEMD simulations and the TTCF response
for relatively large field strengths. For small field strengths,
the direct averages show a decrease in the accuracy of the
calculation, whereas the accuracy in the TTCF response is in-
variant to changes in the field strength. TTCF proves to be
far more efficient at small deformation rates than direct aver-
ages of NEMD simulations. Therefore, this method can be ap-
plied to fluids with deformation rates which are much smaller
than those commonly used in NEMD simulations and thus
approach the field strengths that are typical in experiments.

We have shown that by subtracting the known error from
the correlation function, special phase-space mappings are not
required. Without the need for phase-space mappings, it be-
comes possible to apply TTCF, with a high accuracy, to each
type of homogeneous flow that can be simulated for an indef-
initely long time, for example, elliptical flows. This is merely
one of the yet unexplored applications for TTCF.

While this study presents the application of TTCF to
atomic PMF, the methods discussed here are more generally
applicable. Applying the theories discussed in this study to

molecular fluids, bridges the gap between molecular dynam-
ics simulations and industrial applications and allows for a
direct comparison between both.
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